+2 PCM TEST – 4 JEE-MAINS (13.1.2018) Chemistry Answer Key

I.BSol. Mg(NO₃). → Mg²⁺ + 2NO₁⁻
α =
$$\frac{1-4}{n-1} = \frac{2.74-1}{2} = 0.87$$

Degree of dissociation = 0.87 × 100 = 87%I.A.Sol. Oxidation takes place at magnesium electrode and reduction at hydrogen electrode.NH4 (CO₃ → CaO+CO₂ → H4 (OH (→ H2O) → NH3, (U) (T) (K)BBNH4 (HCO₃ + (D-+) → 2MnO² + 8H₂O + 5I₂Sol. Oxidation takes place at magnesium electrode and reduction at hydrogen electrode.NH4 (HCO₃ + (D-+) → NH3, (U) (T) (K)(ii) 2MnO²₄ + 16H⁺ + 10T → 2MnO² + 8H₂O + 5I₂NH4 (HCO₃ + (D-+) → NH3, (U) (T) (K)(iii) 2MnO²₄ + 16H⁺ + 10T → 2MnO² + 2H₂O + 5I₂NH4 (HCO₃ + (D-+) → NH3, (HCO₃ + (D-+) → 2NAAIO₂ + 2H₂O)(iii) 2MnO²₄ + 16H⁺ + 10T → 2MnO² + 2H₂O + 5I₂NH4 (HCO₃ + (D-+) → NH3, (HCO₃ + (D-+) → 2NAAIO₂ + 2H₂O)(iii) 2MnO²₄ + 16H⁺ + 10T → 2MnO² + 2H₂O + 2I(I)Sol. 2Al+2NaOH + 2H₂O → 2NAAIO₂ + 3H₂O(iv) 2MnO²₄ + 16Q⁻ + 10⁻ → 2MnO₂ + 2OH⁻ + 103Sol. 2Al+2NaOH + 2H₂O → 2NAAIO₂ + 3H₂O(iv) 2MnO²₄ + 16Q⁻ + 10⁻ → 2MnO₂ + 2OH⁻ + 103Sol. 2Al+2NaOH + 2H₂O → 2Al+AH₂ + 2O₂O₂(iv) 2MnO²₄ + 15O²₄ + 15O²₄ + 15O²₄NH4 + 2H₂O → 2Al+2H₂O → 2Al+2O₂(iv) 7(X) 2NAAIO₂ + CO₂ + 3H₂O → 2Al+2OH₂ + 3H₂O(X) 4N²₄ + 15O²₄ + 15O²₄(X) 2NAAIO₂ + 2O₂ + 3H₂O(X) 50 4H₂O₃ + (N₂O₄ → N₂O₄(X) 4 = CO₃ + 15O²₄ + 15O²₄(X) 2NAAIO₂ + 2O² + 12O(X) 4 = CO₃ + 15O²₄ + 12(X) 2NA²₄ + 12(X) 4 = CO₃ + 15O²₄ + 12(X) 2NA²₄ + 12(X) 4 = CO₃ + 15O²₄

Coordinated by: Dr. Sangeeta Khanna, Ph.D (Chemistry), A.P. Singh (Maths), Shiv. R. Goel (Physics) D:\Important Data\2017\+2\Intelliquest\Test-4 JEE Main 13.1.2018\+2 Intelliquest Test-4 JEE Main 13.1.2018 (Chemistry Answer Key).docx

1

NTELLI QUEST

From exp. (2), $4 \times 10^{-2} = k(A)$...(ii) Dividing (ii) and (i), $\frac{4 \times 10^{-2}}{2 \times 10^{-2}} = \frac{k(A)}{k(0.1)} = \frac{A}{0.1}$ \Rightarrow $2 \times 0.1 = A$ \Rightarrow A = 0.2 mol L⁻¹ From exp. (3), B = k(0.4)...(iii) Dividing (iii) and (i), $\frac{B}{2 \times 10^{-2}} = \frac{k(0.4)}{k(0.1)} = 4$ $\Rightarrow \mathbf{B} = 4 \times 2 \times 10^{-2} = 8 \times 10^{-2} \text{ mol } \mathbf{L}^{-1} \text{ s}^{-1}$ From exp. (4), $2 \times 10^{-2} = k$ (C) ...(iv) Dividing (iv) and (i), $\frac{2 \times 10^{-2}}{2 \times 10^{-2}} = \frac{k(C)}{k(0.1)} = \frac{C}{0.1}$ $C = 0.1 \text{ mol } L^{-1}$ \Rightarrow 21. C **Sol.** The CFSE of the ligands is in the order: $H_2O < NH_3 < CN^-$ Hence, excitation energies is in the order: $[Co(H_2O)_6]^{3+} < [Co(NH_3)_6]^{3+} < [Co(CN)_6]^{3-}$ From the relation $E = \frac{hc}{\lambda} \Longrightarrow E \propto \frac{1}{\lambda}$ The order of absorption of wavelength of light in the visible region: $[Co(H_2O)_6]^{3+} > [Co(NH_3)_6]^{3+} > [Co(CN)_6]^{3-}$ 22. C 23. B Sol. NaCN acts as a depressant, it selectively prevents ZnS from coming to froth by forming a complex $Na_2[Zn(CN)_4]$ but allows PbS to come with the froth. 24. A Sol. Greater the reduction potential of a substance, stronger is the oxidizing agent.

 \therefore MnO₄⁻ is the strongest oxidizing agent.

25. B

Sol.
$$E = -2.178 \times 10^{-18} Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

 $E = -2.178 \times 10^{-18} \left[\frac{1}{(2)^2} - \frac{1}{(1)^2} \right]$
 $E = +2.178 \times 10^{-18} \times \frac{3}{4} = 1.6335 \times 10^{-18} J$
 $E = \frac{hc}{\lambda}$
 $\Rightarrow \quad \lambda = \frac{hc}{E} = \frac{6.62 \times 10^{-34} J_S \times 3 \times 10^8 m}{1.6335 \times 10^{-18} J}$
 $\lambda = 12.14 \times 10^{-8} m \text{ or } \quad \lambda = 1.214 \times 10^{-7} m$
26. C

n **Sol.** Mole fraction of solute = -N + nn = number of moles of solute N = number of moles of solvent

18 27. A BiH₃. So the stability also decrease. PH₃ AsH₃ SbH₃ NH_3 BiH₃ Decomposition $1300^{\circ}C$ $4400^{\circ}C$ $280^{\circ}C$ $150^{\circ}C$ room temperature temp. therefore, stability decreases. 28. B Sol. As it absorbs heat, \therefore q = + 208 J $W_{rev} = -2.303nRT \log_{10} \left(\frac{V_2}{V_1}\right)$ $W_{rev} = -2.303 \times (0.04) \times 8.314 \log_{10} \left(\frac{375}{50} \right)$:. $W_{rev} = -207.76 = -208 \text{ J}$ 29. A 30. A Sol. Initial concentration of aq. HCl solution with pH $1 = 10^{-1} M$ Final concentration of this solution after dilution = 10^{-2} M $MV = M_1(V_1+V_2)$

$$10^{-1} \times 1 = 10^{-2} (1 + V)$$
$$\frac{0.1}{0.01} = 1 + V$$
$$10 = 1 + V \Longrightarrow V = 9L$$

Here solute is methyl alcohol, solvent is water.

Given n = 5.2, N =
$$\frac{1000}{18}$$

 \therefore Mole fraction= $\frac{5.2}{5.2 + \frac{1000}{12}} = \frac{5.2}{60.7} = 0.086$

Sol. Thermal stability decreases gradually from NH₃ to

The size of the central atom increases from N to Bi therefore, the tendency to form a stable covalent bond with small atom like hydrogen decreases and

Coordinated by: Dr. Sangeeta Khanna, Ph.D (Chemistry), A.P. Singh (Maths), Shiv. R. Goel (Physics) D:\mportant Data\2017\+2\Intelliquest\Test-4 JEE Main 13.1.2018\+2 Intelliquest Test-4 JEE Main 13.1.2018 (Chemistry Answer Key).docx

2