18

Empowered By:
Test Venue:
Lajpat Bhawan, Madhya Marg, Sector 15-B, Chandigarh

Dr. Sangeeta TKRanna, PR.D S.C.O. 208 (TF) Sector 24-D, Chandigarh. Ph. No. $0172-2713289$ (0), 09888007880 (M).

Grand Test - 5 (Thermodynamics \& Nomenclature)

READ THE INSTRUCTIONS CAREFULLY

1. The test is of 2 hour duration.
2. The maximum marks are 280.
3. This test consists of $\mathbf{6 5}$ questions.
4. Keep your mobiles switched off during Test in the Halls.

SECTION - A (Single Correct Choice Type)

This Section contains 40 multiple choice questions. Each question has four choices A), B), C) and

 D) out of which ONLY ONE is correct. (Mark only One choice) 40×4 = 160 Marks1. Change in entropy is negative for:
(a) Bromine (ℓ) \longrightarrow Bromine (g)
(b) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
(c) $\mathrm{N}_{2}(\mathrm{~g}, 10 \mathrm{~atm}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g}, 1 \mathrm{~atm})$
(d) $\mathrm{Fe}(1 \mathrm{~mol}, 400 \mathrm{~K}) \longrightarrow \mathrm{Fe}(1 \mathrm{~mol}, 300 \mathrm{~K})$

D
Sol. The gaseous phase have more entropy and thus, ΔS is +ve in (A) and (B). Also decrease in pressure increases disorder and thus, $\Delta \mathrm{S}$ is +ve in (C). In (D) the disorder decreases in liquid state due to decrease in temperature. Thus, $\Delta S=-$ ve.
2. The internal energy when a system goes from state A to B is $\Delta U 40 \mathrm{~kJ} / \mathrm{mol}$. If the system goes from A to B by a reversible path and returns to state A by an irreversible path. What would be the net change in internal energy?
(a) 40 kJ
(b) $>40 \mathrm{~kJ}$
(c) $<40 \mathrm{~kJ}$
(d) zero

D
Sol. In a cyclic process $\Delta \mathrm{E}=0$
3. One mole of an ideal gas
$\left(\mathrm{C}_{\mathrm{V}}=20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ initially at STP is heated at constant volume to twice the initial temperature. For the process, W and q will be
(a) $\mathrm{W}=0 ; \mathrm{q}=5.46 \mathrm{~kJ}$
(b) $W=0 ; q=0$
(c) $\mathrm{W}=-5.46 \mathrm{~kJ} ; \mathrm{q}=5.46 \mathrm{~kJ}$
(d) $\mathrm{W}=5.46 \mathrm{~kJ} ; \mathrm{q}=5.46 \mathrm{~kJ}$

A
Sol. $W=P \Delta V=P \times 0=0$
$\mathrm{Q}=\mathrm{C}_{\mathrm{V}}(\Delta \mathrm{T})=20 \times 273=5460 \mathrm{~J}=5.46 \mathrm{~kJ}$
4. The standard enthalpy of formation of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is $-250 \mathrm{~kJ} / \mathrm{mol}$. Find the enthalpy of combustion of $\mathrm{C}_{8} \mathrm{H}_{18}$. The enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\ell)$ are $-394 \mathrm{~kJ} / \mathrm{mol}$ and $-286 \mathrm{~kJ} / \mathrm{mol}$ respectively
(a) $-5200 \mathrm{~kJ} / \mathrm{mol}$
(b) $-5726 \mathrm{~kJ} / \mathrm{mol}$
(c) $-5476 \mathrm{~kJ} / \mathrm{mol}$
(d) $-5310 \mathrm{~kJ} / \mathrm{mol}$
C

Sol. $\mathrm{C}_{8} \mathrm{H}_{18}+\frac{17}{2} \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
$\Delta_{r} \mathrm{H}^{0}=8 \times(-394)+9 \times(-286)-(-250)$
$=-5476 \mathrm{~kJ} / \mathrm{mol}$
5. Calculate the enthalpy for the following reaction using the given bond energies ($\mathrm{kJ} / \mathrm{mol}$)
$\left(\begin{array}{l}\mathrm{C}-\mathrm{H}=414 ; \mathrm{H}-\mathrm{O}=463 ; \\ \mathrm{H}-\mathrm{Cl}=431, \mathrm{C}-\mathrm{Cl}=326 ; \\ \mathrm{C}-\mathrm{O}=335\end{array}\right)$
$\mathrm{CH}_{3}-\mathrm{OH}(\mathrm{g})+\mathrm{HCl}(\mathrm{g}) \longrightarrow \mathrm{CH}_{3}-\mathrm{Cl}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(a) $-23 \mathrm{~kJ} / \mathrm{mol}$
(b) $-43 \mathrm{~kJ} / \mathrm{mol}$
(c) $-59 \mathrm{~kJ} / \mathrm{mol}$
(d) $-511 \mathrm{~kJ} / \mathrm{mol}$
A
6. Using given standard enthalpies of formation (in $\mathrm{kJ} / \mathrm{mol}$) determine the enthalpy of the following reaction?

$$
\begin{aligned}
& \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NF}_{3}(\mathrm{~g})+3 \mathrm{HF}(\mathrm{~g}) \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{NH}_{3}, \mathrm{~g}\right)=-46.2 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0}\left(\mathrm{NF}_{3}, \mathrm{~g}\right)=-113.0 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}_{\mathrm{f}}^{0}(\mathrm{HF}, \mathrm{~g})=-269.0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

(a) $-335.8 \mathrm{~kJ} / \mathrm{mol}$
(b) $-873.8 \mathrm{~kJ} / \mathrm{mol}$
(c) $-697.2 \mathrm{~kJ} / \mathrm{mol}$
(d) $-890.4 \mathrm{~kJ} / \mathrm{mol}$

B
7. Calculate $\Delta_{\mathrm{f}} \mathrm{H}^{0}$ (in $\mathrm{kJ} / \mathrm{mol}$) for $\mathrm{Cr}_{2} \mathrm{O}_{3}$ from the $\Delta_{\mathrm{r}} \mathrm{G}^{0}$ and the S^{0} values provided at $27^{0} \mathrm{C}$
$4 \mathrm{Cr}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) ; \quad \Delta_{\mathrm{r}} \mathrm{G}^{0}=-2093 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{S}^{0}(\mathrm{~J} / \mathrm{K} \mathrm{mol}): \mathrm{S}^{0}(\mathrm{Cr}, \mathrm{s})=24 ;$
$\mathrm{S}^{0}\left(\mathrm{O}_{2}, \mathrm{~g}\right)=205 ; \mathrm{S}^{0}\left(\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{~s}\right)=81 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
(a) - $2258.1 \mathrm{~kJ} / \mathrm{mol}$
(b) $-1129.05 \mathrm{~kJ} / \mathrm{mol}$
(c) $-964.35 \mathrm{~kJ} / \mathrm{mol}$
(d) $3462 \mathrm{~kJ} / \mathrm{mol}$

B
Sol. $\Delta_{r} G^{0}=\Delta_{r} H^{0}-T \times \Delta_{r} S^{0}$

$$
\Delta r S^{0}=2 \times 81-4 \times 24-3 \times 205 \mathrm{~J} / \mathrm{mol}
$$

$$
=162-96-615=-549 \mathrm{~J}
$$

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

$$
=-2093-\frac{300 \times 549}{1000}
$$

$$
=-2093-\frac{164700}{1000}
$$

$$
=-2093-164.7
$$

$$
=-2257.7
$$

$\therefore \Delta_{\mathrm{r}} \mathrm{H}^{0}=-2257.7 \mathrm{~kJ} / \mathrm{mol}$
$\Delta_{\mathrm{r}} \mathrm{H}^{0}=2 \times \Delta_{\mathrm{f}} \mathrm{H}^{0}\left(\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{~s}\right)$
$\therefore \Delta_{\mathrm{H}} \mathrm{H}^{0}\left(\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{~s}\right)=-\frac{2257.7}{2}=-1128.85 \mathrm{~kJ} / \mathrm{mol}$
8. At $25^{\circ} \mathrm{C}$, a 0.01 mole sample of a gas is compressed in volume from 4.0 L to 1.0 L at constant temperature. What is work done for this process if the external pressure is 4.0 bar?
a. $1.6 \times 10^{3} \mathrm{~J}$
b. $8.0 \times 10^{2} \mathrm{~J}$
c. $4.0 \times 10^{2} \mathrm{~J}$
d. $1.2 \times 10^{3} \mathrm{~J}$

D
Sol. $4 \times 3=12$ lit atm $=12 \times 101.3 \mathrm{~J}$
9. For the reaction: $\mathrm{FeCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{FeO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=82.8 \mathrm{~kJ}$ at $25^{\circ} \mathrm{C}$, what is $(\Delta \mathrm{E}$ or $\Delta \mathrm{U})$ at $25^{\circ} \mathrm{C}$?
a. 82.8 kJ
b. 80.32 kJ
c. -2394.77 kJ
d. 85.28 kJ

B
Sol. $\Delta H=\Delta E+\Delta n_{g} R T$
$\Rightarrow 82.8=\Delta \mathrm{E}+\frac{1 \times 8.314 \times 298}{1000}$
$\Rightarrow \quad \Delta \mathrm{E}=80.32$
10. Which of the following reactions is associated with the most negative change in entropy?
a. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
b. $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
c. C (s, graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
d. $3 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\ell)$

D
11. Given the following equations and $\Delta \mathrm{H}^{\circ}$ values, determine the enthalpy of reaction at 298 K for the reaction:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+6 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CF}_{4}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{~g}) \\
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HF}_{4}(\mathrm{~g}) ; \quad \Delta \mathrm{H}_{1}^{\circ}=-537 \mathrm{~kJ} \\
& \mathrm{C}(\mathrm{~s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CF}_{4}(\mathrm{~g}) ; \quad \Delta \mathrm{H}_{2}^{\circ}=-680 \mathrm{~kJ} \\
& 2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) ; \Delta \mathrm{H}_{3}^{\circ}=52 \mathrm{~kJ}
\end{aligned}
$$

a. -1165
b. -2486
c. +1165
d. +2486
B

Sol. $\Delta \mathrm{H}^{\circ}=2 \times \Delta \mathrm{H}_{1}^{\circ}+2 \times \Delta \mathrm{H}_{2}^{\circ}-\Delta \mathrm{H}_{3}^{\circ}$

$$
=-2 \times 537-680 \times 2-52
$$

12. The enthalpy change for the reaction, $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \longrightarrow 2 \mathrm{C}(\mathrm{g})+6 \mathrm{H}(\mathrm{g})$ is X kJ . The bond energy of $\mathrm{C}-\mathrm{H}$ bond is:
a. $\frac{X}{2}$
b. $\frac{X}{3}$
c. $\frac{X}{6}$
d. data insufficient
D
13. Which of the following statement(s) is/are correct?

Statement (i) : The entropy in isolated system with $\mathrm{P}-\mathrm{V}$ work only, is always maximized at equilibrium Statement (ii) : It is possible for the entropy of close system to decrease substantially in an irreversible process.
Statement (iii): Total Entropy of all spontaneous process is positive
Statement (iv) : $\Delta \mathrm{S}_{\text {system }}$ is zero for reversible process in an isolated system.
a. Statement i, ii, iii
b. Statement ii, iv
c. Statement i, ii, iv
d. All of these
D
14. For the reaction,
$\mathrm{X}_{2}(\mathrm{~g})+3 \mathrm{Y}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{XY}_{3}(\mathrm{~g})$
if $\Delta \mathrm{H}-\Delta \mathrm{E}=\mathrm{z}$, at $27^{\circ} \mathrm{C}$, the ratio of z / R is:
a. zero
b. unit
c. $+6 \times 10^{2}$
d. -6×10^{2}

D
Sol. $\Delta n_{g}=2\left(\right.$ of $\left.X Y_{3}\right)-\left[1\left(\right.\right.$ of $\left.X_{2}\right)+3\left(\right.$ of $\left.\left.Y_{2}\right)\right]=-2$
$\Delta H-\Delta E=\Delta n_{g} R T$
But, given value is z.
So, $\quad z=\Delta n_{g} R T$

$$
\frac{Z}{R}=\Delta n_{g} T=-2 \times(27+273)=-600=-6 \times 10^{2}
$$

15. Certain amount of an ideal gas absorbs 300 calories at 298 K and expands by 10 L at 1 atm . The increase in internal energy of the gas is:
a. 242 cal
b. 24.2 cal
c. 58 cal
d. 358 cal
C

Sol. $q=300$ calorie
$\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}=-1 \times 10$ litre-atm $=-10 \times 24.2 \mathrm{cal}=-242 \mathrm{cal}$
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{W}=300-242=58 \mathrm{cal}$
16. 1 mol of water does 3.1 kJ of work during conversion to steam at 1 atm and $100^{\circ} \mathrm{C}$. If heat of vaporisation is $40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the change in internal energy is:
a. 37.55 kJ
b. 43.75 kJ
c. -37.55 kJ
d. -40.65 kJ

A
Sol. $\mathrm{q}=+40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
\mathrm{W}_{\text {exp. }} & =-3.1 \mathrm{~kJ} \\
\Delta \mathrm{E} & =\mathrm{q}+\mathrm{W} \\
& =40.65-3.1=37.55 \mathrm{~kJ}
\end{aligned}
$$

Dr. Sangeeta KKanna PR.D

17. The work done on the system when 1 mol of ideal gas at 500 K is compressed to one-tenth of its original volume is:($\mathrm{R}=2 \mathrm{cal}$)
a. +2.303 kcal
b. -2.303 kcal
c. +23.03 kcal
d. -23.03 kcal
A

Sol. $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{1}{10}$
$W($ on the system $)=-2.303 n R T \log \frac{V_{2}}{V_{1}}$

$$
\begin{aligned}
& =-2.303 \times 1 \times 2 \times 500 \mathrm{log} \frac{1}{10} \mathrm{cal} \\
& =+\frac{2.303 \times 2 \times 500}{1000} \mathrm{kcal}=+2.303 \mathrm{kcal}
\end{aligned}
$$

18. The difference between heat of reaction at constant pressure and constant volume for the reaction, $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})$ is:
(Assume that $\mathrm{R}=0.002 \mathrm{kcal}$ and temperature $=\mathrm{T} \mathrm{K}$)
a. T cal
b. - T cal
c. $-\frac{\mathrm{T}}{2} \mathrm{cal}$
d. $\frac{\mathrm{T}}{2} \mathrm{cal}$

A
Sol. C(s) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})$
$\Delta H-\Delta E=\Delta n_{g} R T$

$$
=\left(1-\frac{1}{2}\right) \times(0.002 \times 1000) \times \mathrm{T} \mathrm{cal}=\mathrm{T} \mathrm{cal}
$$

19. $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s}) ; \quad \Delta \mathrm{H}=\mathrm{x}$.

What is the value of x if 31.75 g copper is liberated with the evolution of 106.15 kJ ? (At. wt. of $\mathrm{Zn}=$ 65.3 and $\mathrm{Cu}=63.5$)
a. 53.075 kJ
b. 106.15 kJ
c. -212.30 kJ
d. None of these
C

Sol. $31.75 \mathrm{~g} \mathrm{Cu} \equiv \equiv-106.15 \mathrm{~kJ}$
$63.5 \mathrm{~g} \mathrm{Cu}(1 \mathrm{~mol} \mathrm{Cu}$ from balanced equation $)=-\frac{106.15 \times 63.5}{31.75} \mathrm{~kJ}=-212.30 \mathrm{~kJ}$
20. Heat of the following reaction in bomb calorimeter is $-1415 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$
What is the heat released if $1.4 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}$ is combusted in open atmosphere at $27^{\circ} \mathrm{C}$?
$\left(\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
a. -70.999 kJ
b. -1419.98 kJ
c. -709.99 kJ
d. -1415 kJ
A

Sol. $\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
For, $\quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$

$$
\Delta \mathrm{E}=-1415 \mathrm{~kJ}, \quad \Delta \mathrm{n}_{\mathrm{g}}=2-(3+1)=-2,
$$

Mol. wt. of $\mathrm{C}_{2} \mathrm{H}_{4}=28 \mathrm{~g}$

$$
\begin{aligned}
\Delta \mathrm{H} & =-1415-2 \times \frac{8.3}{1000} \times 300 \\
& =-1415-4.98=-1419.98 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

For $1.4 \mathrm{gm}=\frac{1419.98}{28} \times 1.4$

$$
=70.999 \mathrm{~kJ}
$$

Dr. Sangeeta KKhanna PR.D

21. A system undergoes a process in which $\Delta \mathrm{E}=+300 \mathrm{~J}$ while absorbing 400 J of heat energy and undergoing an expansion against 0.5 bar. What is the change in the volume (in L)?
a. 4
b. 5
c. 2
d. 3

C
Sol. $\Delta \mathrm{E}=\mathrm{q}+\mathrm{w} ; 300=400+\mathrm{W} ; \mathrm{W}=-100 \mathrm{~J} ;-\mathrm{P} \Delta \mathrm{V}=\mathrm{W}$
$=\frac{100 \mathrm{x}}{101.3}$ lit. atm
$\Delta \mathrm{V}=\frac{\mathrm{W}}{\mathrm{P}}$
22. A sample of liquid in a thermally insulated container (a calorimeter) is stirred for 2 hr . by a mechanical linkage to a motor in the surrounding, for this process:
a. $w<0 ; q=0 ; \Delta U=0$
b. $w>0 ; q>0 ; \Delta U>0$
c. $\mathrm{w}<0 ; \mathrm{q}>0 ; \Delta \mathrm{U}=0$
d. $w>0 ; q=0 ; \Delta U>0$

D
23. Which of the following equations represents a reaction that provides the enthalpy of formation of $\mathrm{CH}_{3} \mathrm{Cl}$?
a. $\mathrm{C}(\mathrm{s})+\mathrm{HCl}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
b. $\mathrm{C}(\mathrm{s})+3 \mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g}) \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
c. $\mathrm{C}(\mathrm{s})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
d. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$

C
24. The enthalpy change for the following reaction is 368 kJ . Calculate the average $\mathrm{O}-\mathrm{F}$ bond energy. $\mathrm{OF}_{2}(\mathrm{~g}) \longrightarrow \mathrm{O}(\mathrm{g})+2 \mathrm{~F}(\mathrm{~g})$
a. $184 \mathrm{~kJ} / \mathrm{mol}$
b. $368 \mathrm{~kJ} / \mathrm{mol}$
c. $536 \mathrm{~kJ} / \mathrm{mol}$
d. $736 \mathrm{~kJ} / \mathrm{mol}$

A
25. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio $1: 1: 0.5$ and $\Delta_{i} H$ for the formation of $X Y$ is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the bond dissociation energy of X_{2} will be:
a. $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
b. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
c. $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
d. $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C
 $=0.5 \mathrm{~m}$.

$$
\begin{aligned}
\frac{1}{2} X_{2} & +\frac{1}{2} Y_{2} \longrightarrow X Y ; \\
-200 & =\frac{1}{2} m+\frac{1}{2} m \times 0.5-m=\frac{1}{2} m+\frac{1}{4} m-m=-\frac{1}{4} m \\
m & =800 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

26. From the following data, what is the $\Delta \mathrm{C}_{P}$ of reaction?
$\mathrm{A}_{2}+\mathrm{B}_{2} \xrightarrow{273 \mathrm{~K}} 2 \mathrm{AB} ; \quad \Delta \mathrm{H}_{1}=-50 \mathrm{~kJ}$
$\mathrm{A}_{2}+\mathrm{B}_{2} \xrightarrow{373 \mathrm{~K}} 2 \mathrm{AB} ; \quad \Delta \mathrm{H}_{2}=-125 \mathrm{~kJ}$
a. $-2.0 \mathrm{~kJ} \mathrm{~K}^{-1}$
b. $-0.75 \mathrm{~kJ} \mathrm{~K}^{-1}$
c. -0.31 . $\mathrm{kJ} \mathrm{K}^{-1}$
d. Unpredictable
B

Sol. $\Delta \mathrm{C}_{\mathrm{P}}=\frac{\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}=\frac{-125-(-50)}{373-273}=\frac{-75}{100}=-0.75 \mathrm{~kJ} \mathrm{~K}^{-1}$
27. $\frac{1}{2} \mathrm{X}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{Y}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{XY}_{3}(\mathrm{~g}) ; \quad \Delta \mathrm{H}=-10 \mathrm{~kJ}$.

The temperature at which the reaction will be at equilibrium is: (Given that, $\Delta_{f} S^{\circ}$ for $X_{2}=40, Y_{2}=60$ and $\mathrm{XY}_{3}=50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
a. 200 K
b. 166.67 K
c. -333 K
d. 333 K
B

Sol. For equilibrium, $T=\frac{\Delta H}{\Delta S}$
$\begin{aligned} \Delta \mathrm{S} & =50-\frac{1}{2} \times 40-\frac{3}{2} \times 60 \\ & =50-20-90=-60 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\ \mathrm{~T} & =\frac{-10 \times 1000 \mathrm{Jmol}^{-1}}{-60 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}}=166.67 \mathrm{~K}\end{aligned}$
28. How much of heat change is represented by the cyclic process shown by the following diagram?

a. $10^{-2} \pi \mathrm{~J}$
b. $10^{2} \pi \mathrm{~J}$
c. $\pi \mathrm{J}$
d. $10^{3} \pi \mathrm{~J}$
B

Sol. $\Delta \mathrm{H}=$ Area $=\pi\left[\mathrm{r}_{\mathrm{V}\left(\mathrm{m}^{3}\right)}\right]\left[\mathrm{r}_{\mathrm{P}(\mathrm{Pa})}\right]$

$$
\begin{aligned}
& =\pi \times 10 \times 10^{-3} \times 10 \times 10^{3} \\
& =10^{2} \pi \mathrm{~Pa} \mathrm{~m}
\end{aligned}
$$

29. The value of $\log _{10} \mathrm{~K}$ for a reaction $\mathrm{A} \rightleftharpoons \mathrm{B}$ is:
(Given: $\Delta \mathrm{rH}_{298 \mathrm{~K}}^{0}=54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$\Delta \mathrm{S}_{298 \mathrm{~K}}^{0}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\mathrm{R}=8.314 \mathrm{JK}^{0} 1 \mathrm{~mol}^{-1}$;
$2.303 \times 8.314 \times 298=5705$
a. 5
b. 10
c. 95
d. 100
B

Sol. $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}=-2.303 R T \log _{10} K$
$\therefore \quad-2.303 \mathrm{RT} \log _{10} \mathrm{~K}=\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}$
$-2.303 \times 8.314 \times 298 \times \log _{10} \mathrm{~K}=-54.07 \times 1000-298 \times 10$
$-5705 \log _{10} \mathrm{~K}=-54070-2980=-57050$
or $\log _{10} \mathrm{~K}=10$
30. Which of the following equal to specific heat of a monoatomic gas at constant volume?
a. $\left[\frac{\partial \mathrm{E}}{\partial \mathbf{T}}\right]_{P}$
b. $\left[\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right]_{\mathrm{H}}$
c. $\left[\frac{\partial \mathrm{E}}{\partial \mathrm{T}}\right]_{\mathrm{V}}$
d. $\left[\frac{\partial \mathrm{E}}{\partial \mathrm{H}}\right]_{\mathrm{T}}$

C
Sol. $C_{V}=\frac{q_{V}}{\Delta T}=\left(\frac{\partial E}{\partial T}\right)_{V}$
\therefore At constant volume $\quad \mathrm{q}_{\mathrm{v}}=\Delta \mathrm{E}$
31. Which class of organic compounds do

and

a. Alicyclic
b. Acyclic
c. Benzenoid
d. Heterocyclic
C

Sol. These are bezene ring containing compounds.
32. The correct IUPAC name of

a. 3 - Hydroxycyclohex - 1 - ene
b. Cyclohex -2 - en -1 - ol
c. Cyclohex-1-en-3-ol
d. Cyclohex - 5 - en - 1 - ol
B

Sol. 'OH' 'ol' is the main group. Its location will get number ' 1 ' and then lowest possible for $\mathrm{C}=\mathrm{C}$

33. Match the facts of Column - I with those of Column - II and select the correct option:

	Column - I		Column - II
(p)		(i)	Neopentyl
(q)		(ii)	Tert-butyl
(r)		(iii)	Isobutyl
(s)		(iv)	Sec-Butyl

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}		\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
a.	(iv)	(i)	(ii)	(iii)	b.	(iii)	(i)	(iv)	(ii)
c.	(iv)	(i)	(iii)	(ii)	d.	(iii)	(ii)	(iv)	(i)

34. Select the correct IUPAC name of:

a. 3-Ethyl-5-(2,2-dimethylbutyl) decane
b. 5-(2,2-Dimethylbutyl) -3-ethyl decane
c. 5-(2-Ethylbutyl) -3,3-dimethyl decane
d. All are correct C

Sol.

From lower part and right side both give longest carbon chain of 10 C - atom, but lower part gives more number of side chains.
35. Which of the following is the correct order of priority of some of the functional grops?
a. $-\mathrm{COOH}>-\mathrm{SO}_{3} \mathrm{H}>-\mathrm{COOR}>-\mathrm{COCl}$
b. $-\mathrm{COOH}>-\mathrm{COOR}>-\mathrm{SO}_{3} \mathrm{H}>-\mathrm{COCl}$
c. $-\mathrm{SO}_{3} \mathrm{H}>-\mathrm{COOH}>-\mathrm{COOR}>-\mathrm{COCl}$
d. $-\mathrm{COCl}>-\mathrm{COOR}>-\mathrm{COOH}>-\mathrm{SO}_{3} \mathrm{H}$
A
36. If a liquid has very high boiling point or decomposes at or below its b.p., is purified by using:
a. steam distillation
b. reduced pressure distillation
c. fractional distillation
d. None of these

B
37. IUPAC name of compound,
 is:
a. N, N - Dimethylcyclopropane carboxamide
b. N-methylcyclopropanamide
c. Cyclopropionamide
d. Cyclopropyl-N,N-dimethyl-methanamide
A

Sol. $-\mathrm{CONH}_{2}$ group is the main group.
38. The structure of the compound whose IUPAC name is 3-Ethyl-2-hydroxyl-4-methylhex-3-en-5-ynoic acid, is:
a.

b.

c.

d.

39. The IUPAC name for

a. 1 - hydroxypentane - 1, 4 - dione
b. 1, 4-dioxopentanol
c. 1 - carboxybutan - 3 - one
d. 4 - oxopentanoic acid

D

$$
5 \begin{array}{lllll}
\mathrm{O} & 4 \| & 3 & 2 & 1 \|
\end{array}
$$

Sol. $\mathrm{H}_{3} \mathrm{C}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}$
40. Which of the following compound is Heterocyclic and aromatic.
a.

b.

C.

d.

A

SECTION - B (Assertion \& Reason) Negative Marking [-1]

This Section contains 6 questions. Each question has four choices A), B), C) and D) out of which ONLY ONE is correct. $6 \times 4=24$ Marks
(A) Statement -1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement -1
(B) Statement -1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement-1
(C) Statement -1 is true, Statement -2 is false
(D) Statement -1 is false, Statement -2 is true

1. Statement - 1: Cyclocta-1,3,5,7-tetraene is non-aromatic compound Statement - 2: It is nonplaner molecule having Tub-shape.
a. (A)
b. (B)
c. (C)
d. (D)

A
2. Statement - 1: Due to adiabatic free expansion temperature of real gas may increase

Statement - 2: In adiabatic free expansion, temperature is always constant irrespective of real or ideal gas
a. (A)
b. (B)
c. (C)
d. (D)
C
3. Statement - 1: The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.
Statement - 2: The volume occupied by the molecules of an ideal gas is negligible
a. (A)
b. (B)
c. (C)
d. (D)

A
4. Statement -1: $\Delta \mathrm{H}$ and $\Delta \mathrm{E}$ are the same for the reaction, $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$, Statement - 2: All reactants and products are gases with $\Delta \mathrm{ng}=0$.
a. (A)
b. (B)
c. (C)
d. (D)
A
5. Statement - 1: Enthalpy and entropy of any elementary substance in the standard states are taken as zero.
Statement - 2: At absolute zero, particles of the perfectly crystalline substance become completely motionless.
a. (A)
b. (B)
c. (C)
d. (D)
D
6. Statement - 1: Internal energy change in a cyclic process is always +ve (i.e., >0).

Statement - 2: Internal energy is a state function.
a. (A)
b. (B)
c. (C)
d. (D)

D
Sol. Correct Statement -1: Internal energy change in a cyclic process is always zero.

SECTION - C (Paragraph Type) Negative Marking [-1]

This Section contains 2 paragraphs. Each of these questions has four choices A), B), C) and D) out of which ONLY ONE is correct.
$5 \times 4=20$ Marks

Passage - 1

Given at $25^{\circ} \mathrm{C}$,

$$
\begin{array}{ll}
\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{HF}(\mathrm{aq}) & =-320.1 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{OH}^{-}(\mathrm{aq}) & =-229.6 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{~F}^{-}(\mathrm{aq}) & =-329.1 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{H}_{2} \mathrm{O}(\ell) & =-285.8 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

1. Calculate the standard enthalpy of neutralization of $\mathrm{HF}(\mathrm{aq})$ by $\mathrm{NaOH}(\mathrm{aq})$.
a. -57.1 kJ
b. -65.2 kJ
C. +57.1 kJ
d. -60.2 kJ
B

Sol. The reaction for the neutralisation of HF by NaOH is

$$
\begin{aligned}
& \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{F}^{-}(\mathrm{aq}) \\
& \begin{aligned}
\therefore \Delta \mathrm{H}^{\circ}= & {\left[\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{H}_{2} \mathrm{O}(\ell)+\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{~F}^{-}(\mathrm{aq})\right]-\left[\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{HF}(\mathrm{aq})+\Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{OH}^{-}(\mathrm{aq})\right] } \\
\Delta \mathrm{H}^{\circ} & =[-285.8+(-329.1)]-[-320.1+(-229.6)] \\
& =-614.9-(-549.7) \\
\Delta H^{\circ} & =-65.2 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

2. If the enthalpy change for the formation of $\mathrm{H}_{2} \mathrm{O}(\ell)$ from its aqueous ion is -57.1 kJ , calculate the enthalpy change for the reaction:

$$
\mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

a. 65.2 kJ
b. 10 kJ
c. -8.1 kJ
d. +8.1 kJ

C

Sol. The ionization of HF into H^{+}and F^{-}can be expressed in terms of $\Delta \mathrm{H}_{\text {neut }}^{0}$ of HF and OH^{-}and $\Delta \mathrm{H}^{\circ}$ formation of $\mathrm{H}_{2} \mathrm{O}$ from its aqueous ions

$$
\begin{array}{cl}
\mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{F}^{-}(\mathrm{aq}) & \Delta \mathrm{H}_{1}^{0}=-65.2 \mathrm{~kJ} \\
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) & \Delta \mathrm{H}_{2}^{0}=-57.1 \mathrm{~kJ}
\end{array}
$$

Reverse equation (2) + equation (1) gives

$$
\mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

$$
\begin{aligned}
\Delta \mathrm{H}^{\circ} & =-\Delta \mathrm{H}_{2}^{0}+\Delta \mathrm{H}_{1}^{0} \\
& =+57.1-65.2 \\
& =-8.1 \mathrm{~kJ}
\end{aligned}
$$

Passage - 2

The entropies of methyl chloride and hydrogen are plotted as a function of temperature from OK to 300K. Data are for molar quantities. The phase present at various temperature are noted. The first vertical line segment on each graph represents fusion (s) $+(\ell)$ the second represents vaporization $(\ell)+(\mathrm{g})$.

3. The entropy of methyl chloride is more than hydrogen due to:
a. molecular mass of $\mathrm{CH}_{3} \mathrm{Cl}$ is more than H_{2}
b. H_{2} has more vibrational mode than $\mathrm{CH}_{3} \mathrm{Cl}$
c. $\mathrm{CH}_{3} \mathrm{Cl}$ has more vibrational mode than H_{2}
d. None of these

C
Sol. It is clear from the plot that at low temperatures entropy of hydrogen is higher than methyl chloride. As temperature decreases vibrations decrease. It follows that the higher entropy of $\mathrm{CH}_{3} \mathrm{Cl}$ is due to vibrational modes.
4. Which of the following character of entropy is not correct?
a. It is an extensive property
b. It is an intensive property
c. It depends on molecularity of compound
d. It depend on temperature

B
Sol. Entropy is an extensive property since it depends on number of moles of the compounds.
5. The boiling point of $\mathrm{CH}_{3} \mathrm{Cl}$ on the basis of entropy graph is:
a. 175 K
b. 300 K
c. 250 K
d. 200 K
C

Sol. Boiling point is the temperature when liquid changes to vapour.

SECTION - D (More than One Answer Type) No Negative Marking

This Section contains 6 multiple choice questions. Each question has four choices A), B), C) and D) out of which MORE THAN ONE ANSWER is correct.
$6 \times 5=30$ Marks

1. Predict in which of the following, entropy increases/decreases:
(a) A liquid crystallizes into a solid
(b) Temperature of a crystalline solid is raised from 0 K to 115 K
(c) $2 \mathrm{NaHCO}_{3}$ (s) $\longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}$ (s) $+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(d) $\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{g})$

A,B,C,D

2. Identify the extensive quantities from the following :
a. Gibb's energy
b. Entropy
c. Refractive index
d. Specific heat

A,B

3. Which is true about entropy?
a. $\Delta \mathrm{S}=\frac{\Delta \mathrm{q}_{\mathrm{rev}}}{\mathrm{T}}$
b. $\Delta \mathrm{S}=\frac{\Delta \mathrm{q}_{\mathrm{irr}}}{\mathrm{T}}$
c. $\Delta \mathrm{S} \neq \frac{\Delta \mathrm{q}_{\mathrm{irr}}}{\mathrm{T}}$
d. $\Delta \mathrm{S}_{\text {fusion }}^{\circ}=\frac{\Delta \mathrm{H}_{\text {fusion }}^{\circ}}{\text { B.pt. }}$

A,B
4. The enthalpy change for the process C (graphite) $\longrightarrow \mathrm{C}(\mathrm{g})$ is called
a. heat of vaporization
b. heat of sublimation
c. heat of allotropic change
d. heat of atomisation

B,C,D
Sol. C(s) $\longrightarrow \mathrm{C}(\mathrm{g})$. The process is sublimation as well conversion of crystalline allotropic form (graphite) to amorphous form (gas carbon). Hence (b) (c) and (d) are correct.
5. The normal boiling point of a liquid ' X ' is 400 K . Which of the following statement is true about the process $\mathrm{X}(\ell) \longrightarrow \mathrm{X}(\mathrm{g})$?
a. at 400 K and 1 atm pressure $\Delta \mathrm{G}=0$
b. at 400 K and 2 atm pressure $\Delta \mathrm{G}=+\mathrm{ve}$
c. at 400 K and 0.1 atm pressure $\Delta \mathrm{G}=-\mathrm{ve}$
d. at 410 K and 1 atm pressure $\Delta \mathrm{G}=+\mathrm{ve}$

A,B,C
Sol. At 2 atm , normal boiling point will be increased \& more than 400 K .
6. Using Huckel rule, predict which of the following hydrocarbons will exhibit aromatic stabilisation:
a.

b.

c.

d.

A,C

SECTION - E (Matrix Type) No Negative Marking

This Section contains 2 questions. Each question has four choices (A, B, C and D) given in Column I and five statements (p, q, r, and s) in Column II. Any given statement in Column I can have correct matching with one or more statement(s) given in Column II.

1. Match Column - I with Column - II.

Column I		Column II	
(A)	$\Delta \mathrm{H}=+\mathrm{ve}, \Delta \mathrm{S}=+\mathrm{ve}$	(p)	Spontaneous at all temperature
(B)	$\Delta \mathrm{H}=+\mathrm{ve}, \Delta \mathrm{S}=-\mathrm{ve}$	(q)	Spontaneous at low temperature
(c)	$\Delta \mathrm{H}=-\mathrm{ve}, \Delta \mathrm{S}=+\mathrm{ve}$	(r)	Non-spontaneous at low temperature
(d)	$\Delta \mathrm{H}=-\mathrm{ve}, \Delta \mathrm{S}=-\mathrm{ve}$	(s)	Non-spontaneous at high temperature
		(t)	Non-spontaneous at any temperature

Sol. $A=r ; B=t$ may be $r, s ; C=p$ may $q ; D=q, s$
$\Delta G=\Delta H-T \Delta S$. for spontaneity ΔG is -ve and for non - spontaneity, $\Delta \mathrm{G}$ is +ve .
(A) $\Delta \mathrm{H}=+\mathrm{ve}, \Delta \mathrm{S}=+\mathrm{ve}$

At low $\mathrm{T}, \Delta \mathrm{G}=+\mathrm{ve}$ (non - spontaneous)
At high $\mathrm{T}, \Delta \mathrm{G}=-\mathrm{ve}$ (spontaneous)
(B) $\Delta \mathrm{H}=+\mathrm{ve}, \Delta \mathrm{S}=-\mathrm{ve}$,
$\Delta \mathrm{G}$ will be always - ve and hence spontaneous at all temperatures.
(D) $\Delta \mathrm{H}=-\mathrm{ve}, \Delta \mathrm{S}=-\mathrm{ve}$

At low $\mathrm{T}, \Delta \mathrm{G}=+\mathrm{ve}$ (Spontaneous)
At high, $\mathrm{T}, \Delta \mathrm{G}=+\mathrm{ve}$ (Non - spontaneous)
2. Match the following (One or more than one match)

| | Column-I | | Column - II |
| :--- | :--- | :--- | :--- | :--- |
| (A) | (B) | (P) | Aromatic |
| (C) | (D) | (Q) | Non-aromatic |
| (D) | (R) | Anti aromatic | |

Sol. A $\rightarrow r, s ; B \rightarrow r, s ; C \rightarrow p ; D \rightarrow q, s$

SECTION - F (Integer Type) No Negative Marking

This Section contains 6 Questions. The answer to each question is a Single Digit Integer ranging from 0 to 10.
$6 \times 5=30$ Marks

1. Temperature of one mole of helium gas is increased by $1^{\circ} \mathrm{C}$, find the increase in internal energy in cal.

Sol. 3
$\Delta \mathrm{E}=\frac{3}{2} \mathrm{nR} \Delta \mathrm{T}=\frac{3}{2} \times 1 \times 2 \times 1=3$
2. An ideal gas is taken through the cycle $A \rightarrow B \rightarrow C \rightarrow A$ as shown in figure. If net heat supplied to the gas in the cycle is 5 J . Find the work done in the cyclic process in Joule.

Sol. 5
3. The enthalpy change involved in the oxidation of glucose is $-2880 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Twenty five percent of this energy is available for muscular work. If 100 kJ of muscular work is needed to walk one kilometre, what is the maximum distance that a person will be able to walk after eating 125 g of glucose?
Sol. 5 km
Energy available for muscular work $=\frac{2880 \times 25}{100}=720 \mathrm{~kJ} / \mathrm{mol}$
$\therefore \quad$ Energy available for muscular work from 125 gm glucose $=\frac{720}{180} \times 125=500 \mathrm{KJ}$
$\therefore \quad$ Distance travelled $=\frac{500}{100}=5 \mathrm{KM}$
4. Heat of neutralization between HCl and NaOH is -13.7 k cal. If heat of neutralization between $\mathrm{CH}_{3} \mathrm{COOH}$ and NaOH is -11.7 kcal. Calculate heat of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$.
Sol. 2
$\mathrm{Q}=13.7-11.7=2$
5. A gas occupies 2 litres at STP. It is provided 58.63 joule heat so that its volume becomes 2.5 litre at 1 atm. Calculate change in internal energy in Joules.
Sol. 8 Joule
Work done $=-\mathrm{P} \times \mathrm{dV}=1 \times(2.5-2.0)$

$$
\begin{aligned}
& =-0.5 \text { litre }- \text { atm } \quad \text { or } 1 \text { lit atm }=101.3 \mathrm{~J} \\
& =-\frac{0.5 \times 1.987 \times 4.184}{0.0821}=\text { joule }=-50.63 \mathrm{~J}
\end{aligned}
$$

\because Work is carried out at constant P and thus irreversible.
From $1^{\text {st }}$ law of thermodynamics
$\because \quad q=\Delta U-W$
$58.63=\Delta u+50.63$
$\therefore \quad \Delta \mathrm{U}=8$ joule
6. What is the value of n in Huckel's rule when a compound has 9 pairs of π electrons?

Sol. 4
$4 n+2 \pi \quad$ i.e. $n=4 ; \quad 18 \pi e^{-}$

